P	ROCEEDINGS	
	PAPER 3: VERTICAL CONVEYORS IN DEEP SHAFT MINING Jose Montoya, FKC – Lake Shore, Evansville, IN, USA	1
	PAPER 9: NEXT LEVEL OF SIL (SAFETY INTEGRITY LEVEL) BY A NEW INTEGRAL APPROACH FOR A COMPLETE HOISTING SYSTEM P. H. Noy, SIEMAG TECBERG UK Ltd., Rugby, UK	8
	PAPER 11: SHAFT HOISTING SYSTEM FOR A NEW MINE IN RUSSIA, INCLUDING THE WORLD'S DEEPEST KOPE HOIST; SKS1 SHAFT NORILSK/SIBERIA Klaus Hofmann, SIEMAG TECBERG GmbH, Haiger, Germany	19
	PAPER 15: EMBEDDED CONTROL SYSTEM SIMULATION FOR MINE HOISTS D. Stefou, Hepburn Engineering Inc., Etobicoke, ON, Canada	30
	PAPER 16: CERBERUS SIL RADIO SYSTEM N. Craddock, Tecom Australia, Mayfield East, NSW, Australia	36
	PAPER 17: OLYMPIC DAM CLARK SHAFT TECHNOLOGY UPGRADE – CASE STUDY P. J. Moore, BHP Olympic Dam Corporation Pty Ltd., Adelaide, Australia; C. M. Rossetti, AECOM Australia Pty Ltd., Fortitude Valley, Queensland, Australia	41
	PAPER 18: OPTIMISATION OF WINDER SKIP WEAR LINERS USING THE DISCRETE ELEMENT METHOD Nicholas Jones, AECOM Australia Pty Ltd., Brisbane, Australia	52
	PAPER 20: DEM MODELING OF SKIP LOADING & UNLOADING PERFORMANCE PROVIDES THE CONFIDENCE TO INCREASE HOISTING CAPACITY IN EXISTING MINE SHAFTS T. Holmes, Jenike & Johanson Ltd., Mississauga, ON, Canada; S. Gorzalczynski, Wabi Iron & Steel Corp., New Liskeard, ON, Canada	67
	PAPER 21: HOISTING SYSTEM MAINTENANCE – A RISK-BASED APPROACH FOR ESTABLISHING SAFE AND EFFICIENT STRATEGIES L. Prior, AECOM Australia Pty Ltd., Brisbane, Australia; B. McDermott, Ernest Henry Mining Pty Ltd., Cloncurry, Australia	76
	PAPER 23: HOIST MAINTENANCE SAFEGUARD SYSTEM IMPLEMENTATION AT VALE'S SUDBURY OPERATIONS Allan Guse, P.Eng., Vale Canada Ltd., Sudbury, ON; Francis Lacasse, P.Eng, ABB, Montreal QC	89
	PAPER 25: USE OF DIGITAL TOOLS FOR MINE HOIST SYSTEM MONITORING Magnus Uddman, ABB, Vasteras, Sweden; Francis Lacasse, P.Eng, ABB, Montreal, QC	98

PAPER 26: HEAVY LIFT BLOCK HOISTS D. M. Koekemoer and R. Harwood, ABB South Africa Ltd., Gauteng, RSA	105
PAPER 28: ANNUAL INSPECTIONS ON MINE HOISTS F.A. Engelbrecht, ABB South Africa, Rustenburg, South Africa	116
PAPER 32: FUTUREPROOFING CONVEYOR HAULAGE SYSTEMS Ric Featherstone, AECOM Australia Pty Ltd., Brisbane, Australia	126
PAPER 37: PRACTICAL IMPLEMENTATION OF RISK MANAGEMENT PROGRAMS FOR SHAFTS AND HOIST PLANTS Jason Morrow, Stantec, Chandler, AZ, USA	138
PAPER 38: THE IMPACT OF USING HYBRID ROPES ON A KOEPE HOIST Roger Algotsson and Per Johansson, ABB AB, Vasteras, Sweden; Henry Schultheis and Pengzhu Wang, Bridon International Ltd.	145
PAPER 39: SINGLE-DRUM WINDERS: DESIGN CONSIDERATIONS FOR IMPROVED BRAKE CONTROL S. D. Grover and M. P. du Plessis, DRA Projects Pty (Ltd.), Sunninghill, South Africa	156
PAPER 46: HEADFRAME DESIGN SELECTION: STEEL VS. CONCRETE HEADFRAME, VERSION 2.0 R.M. Heppler, WSP Canada Inc., Thunder Bay, ON, Canada; Z.A. White, Structural Engineer	169
PAPER 47: SHAFT GUIDE DESIGN: FIXED GUIDES VS. ROPE GUIDES D. M. Ziebarth and R.M. Heppler, WSP Canada Inc., Thunder Bay, ON, Canada	178
PAPER 51: DEVELOPING PERFORMANCE REQUIREMENTS FOR BLAIR MULTI-ROPE (BMR) HOIST COMPENSATING SHEAVES M. R. Lepage and J. P. B. DeBenedet, Cementation Canada Inc., North Bay, ON, Canada	193
PAPER 52: NEW ROPE HANDLING EQUIPMENT, STAND-ALONE OPERATION, AND SYSTEM INTEGRATION AT NUTRIEN ALLAN M. A. Morissette and M. A. Tomtene, Nutrien Allan Potash, Allan, SK, Canada; M. Schmidt, Siemag Tecberg GmbH, Haiger, Hessen, Germany	202
PAPER 55: TECHNO-ECONOMIC FACTORS IN THE SELECTION OF AN UNDERGROUND MINE ORE HAULAGE SYSTEM – AN AUSTRALIAN PERSPECTIVE S. Wilson, AECOM Australia Pty. Ltd., Brisbane, Australia	218
PAPER 56: AN IMPROVED METHOD FOR MINE HOIST RISK ASSESSMENTS USING A QUANTITATIVE APPROACH Alonso C. Morey, ABB Sweden; Francis Lacasse, ABB Canada	230

PAPER 58: CAGE GUARDIAN™ SAFETY BRAKE FOR STEEL GUIDES M. Thiesen, D. Strong, and H. Laarakker, FLSmidth Ltd., Orillia, ON, Canada	239
PAPER 59: EMERGENCY EGRESS HOIST PLANT SELECTION Joshua MacDonald, Sudbury, ON, Canada	248
PAPER 60: DEVELOPMENT OF AS 4730 SERIES OF STANDARDS: MINING – WINDING EQUIPMENT Michael Taylor, Advitech Pty Ltd., Newcastle, NSW, Australia; Michael Fitjer, Hoisting Technology Consultant	254
PAPER 63: KOEPE FRICTION HOIST ROPE REPLACEMENT METHOD WITHOUT A FRICTION WINCH Adam Bieńkowski, Sadex, Rybnik, Poland; Robert Bućko, Sadex-Serwis, Rybnik, Poland	259
PAPER 68: HOIST LIFE, FATIGUE LIFE, AND INSURABILITY Ian F. Armitage, Hepburn Engineering Inc., Toronto, ON, Canada; Grzegorz Glinka, Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada	271
PAPER 72: MACHINE LEARNING – A DYNAMIC MODEL FOR STRAIN-ENERGY ABSORPTION SYSTEMS C. H. Stephenson, H. W. Stephenson, and J. D. E. Apps, Technogrid (Pty) Ltd., Western Cape, South Africa	283
PAPER 75: STIFFNESS EVALUATION OF HOIST DRUMS Nelis van der Walt and Faure Louw, Winder Controls, a member of the SIEMAG TECBERG Group, Haiger / Kalteiche, Germany	298
PAPER 77: REVIEW OF INDUSTRY BEST PRACTICES FOR THE USE AND MAINTENANCE OF SHAFT ROPES ON CONVENTIONAL DRUM HOISTS AND MULTI-ROPE FRICTION WINDERS P. G. Smith and A. Axiuk, Haggie North America Inc.	311